SPEED SCI MODULE

1. INTRODUCTION

The documentation related to necessary input files of the SPEED program can be found here: <u>Link To Documentation</u>.

The additional input parameters/ files that are needed to run the SPEED-SCI modules are explained here.

Note: The Mesh-partitioning subroutine is updated to METIS-5.1.0 (the SPEED-master branch uses older METIS-4.0.3)

2. INPUT FILES

A. SPEED.input

In addition to the definitions specified in official documentation, SPEED-SCI module needs the following tags/definitions.

SDOFFILE	\$Folder containing files related to Building Parameters
	(BLDINFO.txt file)
SDOFOUT	\$01 \$02 \$03 \$04

The \$01 \$02 \$03 \$04, are logical values (0 or 1). This must be defined to request the Output files related to the structural response.

0 = Out	put only the base shear forces, and structural respons
top sto	
1 = out	put the structural response at all the degrees of freedo
in each	building.
\$02:1	= Output the relative structural displacements.
\$03:1	= Output the relative structural Acceleration.
\$04:1	= Output the base reaction forces.

SYSLST (Similar to MLST in the main documentation, but to search for the nearest nodes to buildings.)

B. SYS.input

Currently in SPEED-SCI modules, the base reactions from the buildings are applied at a single spectral node in the MESH domain. The spectral node that is closest to the building is selected to apply the reaction forces. This file contains the locations/ coordinates of the buildings.

-					
-Hè	nr	m	2	t۰	
1	UI.	111	a	ι.	

First Line:\$Total No. of BuildingsSecond line onwards:\$BldNo\$Xcord \$Ycord \$Zcord \$Rotation

\$Xcord \$Ycord \$Zcord: X, Y and Z coordinates of the centroid of each building
 \$Rotation: The principal axes of the building can be different from the global X, Y and Z axes of the MESH domain.
 \$Rotation is the angle measured in anticlockwise direction from global X-axis to the local X-axis of the building.

C. \$SDOFFILE/BLDINFO.txt

The is input file to specify the dynamic response characteristics of structural behavior.

Example Files:

(1) BLDINFO.txt File for 2 SDOF buildings:

2					!First Line
1	1	1			!Structure-1, Line-1
0	0				!Structure-1, Line-2
1.2	2527000E+04	7.4720000E+06	2.0000000E-02	0.2572675E+00	!Structure-1, Line-3
2	1	3			!Structure-2, Line-1
0	0				!Structure-2, Line-2
1.2	2527000E+04	7.4720000E+06	1.4944000E+06	0.000000E+00	2.000000E-02
7.0	0000000E+04	6.000000E-02	1.000000E-01	0.2572675E+00	!Structure-2, Line-3
1					

(2) BLDINFO.txt File for 2 SDOF buildings:

2	2	2									
8	3.462	218.054	1000	1							
4.787413 4.787413	e+08 e+08	3.721988	e+06	0.166730 0.166730		0.600 0.600	-0.001 -0.001	2.50 2.50	1.00 1.00	0.400 0.400	0.200 0.200
4.787413 4.787413	e+08	e	tructu	ure 1,	back	hono	our		onorti	00	0.200 0.200
4.787413 4.787413		0	uucu	лет,	Dach	DOLIE	Curv	e pro	operu	62	0.200 0.200
4.787413 4.787413		1.550828		0.166730 0.166730	1000.00 1000.00	0.600 0.600	-0.001 -0.001	2.50 2.50	1.00 1.00	0.400 0.400	
2	2	2									
10	3.320	552.070	1000	1							
1.182553		1.166321			1000.00	0.600	-0.001	2.50	1.00	0.400	
1.182553 1.182553		1.145115	e+0/	0.166730	1000.00	0.600	-0.001	2.50	1.00	0.400	0.200
1.182553											0.200
1.182553			Struct	ure2, l	hack	hone	CUITY	e nro	poerti	29	0.200
1.182553			aut	$a_1 c_2, 1$	JUCK	DONE	our v	o pic	perti	00	0.200
1.182553				0.100/30	1000.00	0.000	0.001	2130	1.00	0.400	0.200
1.182553		5.725576			1000.00	0.600	-0.001	2.50	1.00	0.400	
1.182553		4.029109			1000.00	0.600	-0.001	2.50	1.00	0.400	
1.182553	e+09	2.120584	e+06	0.166730	1000.00	0.600	-0.001	2.50	1.00	0.400	0.200
1 0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400		Ct.		o 1 1	Dam		tot-	•
0.0020	0.0050	0.0150	0.0400		SI	uctur	e I, I	Dam	age S	state	5
0.0020	0.0050	0.0150	0.0400						0		
0.0020	0.0050	0.0150	0.0400								
0.0020 2	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050 0.0050	0.0150 0.0150	0.0400 0.0400								
0.0020	0.0050	0.0150	0.0400 0.0400		Ct.	undu	~ <u>)</u>	Dom		toto	-
0.0020	0.0050	0.0150	0.0400		SI	uctur	e z, i	Dam	age S	state	5
0.0020	0.0050	0.0150	0.0400						0		
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
0.0020	0.0050	0.0150	0.0400								
! Time P											
1				7 0.0011664		Damp	ing E	Darar	notor	<u> </u>	
2	0.908324	6 0.305046	3 0.207131	6 0.0014538		Janip	лиу г	aidi	neter	3	

Format:

First Line: \$(Total No. of Buildings)

Second Line on wards: Structural dynamic properties of Structure No. 1, then Structure No. 2, and so on.

Structural Properties of a single Structure, Line 1:

\$(Structure_ID) \$(Struct_Type) \$(ConstitutiveLaw)

\$Struct_Type : 1 -SDOF; 2- MDOF

\$ConstitutiveLaw : Behavior of interstory shear stress-displacement

For SDOF: (1-Linear Elastic [LE], 2-Elastic-perfectly-plastic[EPP], 3-Trilinear)

For MDOF: (1-Linear Elastic [LE], 2-Non-linear shear spring [NL])

The Nonlinear properties for MDOF systems are based on data from Hazus Technical Manual. The single-parameter hysteresis behavior is used, based on pinching factor. Rayleigh damping is assumed for structural damping.

Structural Properties of a single Structure, Line 2:

For SDOF: \$(flag_SSI) \$(flag_point_area_force)

For MDOF:

\$NST \$story_height \$story_area \$Mass_per_unit_area \$(flag_point_area_force)

\$flag_SSI : 0 (default); Under Development -> (1 – Soil Structure interaction enabled assuming 3DOF for soil-foundation system)

\$flag_point_area_force: 1 (default value). (Apply reactions from Building onto Soil assuming: 1-PointForce, 2- [under development] ShearStress over an Area of ground surface)

\$NST: No. of Stories/floors in structure

\$Mass_per_unit_area: Mass per unit area.

(Floor Mass = \$Mass_per_unit_area* \$story_area)

Structural Properties of a single Structure, Line 3:

Depending on the chosen structural model, the structural parameters are displayed as follows:

- For LE SDOF (1 line, 4 parameters):
 \$mass \$stiffness \$damping_factor \$natura_period
- For EPP SDOF (1 line, 5 parameters):
 \$mass \$stiffness \$damping_factor \$yield_strength \$natural_period
- For trilinear SDOF model (1 line, 9 parameters):

\$mass \$stiffness \$hardening_coefficient \$softening_coefficient
\$damping_factor \$yield_strength \$peak_displacement
\$ultimate_displacement \$natural_period

• MDOF Structure: (\$NST lines, each line corresponds to 10 strength parameters of corresponding structural floor/story)

```
1<sup>st</sup> floor: properties (1,2,....10)
2<sup>nd</sup> floor: properties (1,2,....10)
```

....

nth floor: properties (1,2,....10)

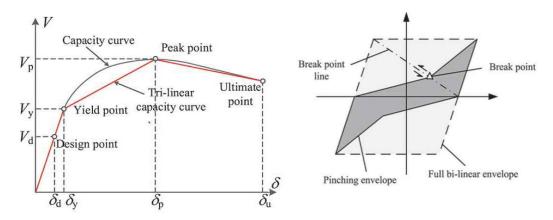
properties (1): Initial tangent stiffness. (For MDOF-Linear structure, only this property is read, remaining properties are dummy)

properties (2): Initial yield stress.

properties (3): Hardening stiffness ratio.

properties (4): Parameter for cumulative damage. (No cumulative damage is considered when this value is positive infinity)

properties (5): Pinching factor. (0 for very severe pinching, more elastic; 1 for no pinching, more energy dissipation)


properties (6): Softening stiffness ratio

properties (7): The ratio of peak strength over yielding strength

properties (8): The ratio of the yield strength between the negative and positive loading direction

properties (9): Parameter for unloading stiffness. (0 if the unloading stiffness equals initial stiffness; 1 if unloading path pointing to 0)

properties (10): Crack closure position.

Figure 1 (a) Non-linear backbone curve for shear force-displacement, (b) Hysteresis Behavior based on single parameter

After defining Structural Strength Properties:

For MDOF, 4 Damage states based on inter-story drift ratios:

BLD1:

\$BLD_ID

1st floor: \$DS1 \$DS2 \$DS3 \$DS4

2nd floor: \$DS1 \$DS2 \$DS3 \$DS4

...

nth floor: \$DS1 \$DS2 \$DS3 \$DS4

BLD2....

BLD_N....

[\$DS4 = complete damage]

After defining Structural Damage states:

For MDOF, Time periods corresponding to first two modes of vibration, and Rayleigh damping coefficients:

\$BLD_ID \$period_of_first_mode \$period_of_second_mode \$rayleighdamping_alpha \$rayleighdamping_beta

3. OUTPUT FILES

SPEED-SCI modules saves the output files containing structural response, in the same folder as SPEED (folder defiled under 'MONFILE' in SPEED.input file). The output is saved in SDOF000000.* files. Depending on the user request in SPEED.input file, the saved outputs are:

- 1. Structural displacements relative to ground motion (SDOF000000.[DX, DY,DZ] files) and Ground displacement under the structure (GDX, GDY, GDZ files).
- 2. Structural accelerations relative to ground motion (SDOF000000.[AX, AY,AZ] files) and Ground accelerations under the structure (GAX, GAY, GAZ files).
- 3. Base reaction Forces (or) inter-story shear forces (SDOF000000.[FX,FY,FZ] files)

Also depending on the user request in SPEED.input file, the output either contains (i) response at just one-degree-of freedom(response at top floor for displacements/accelerations; structure base reactions in FX,FY,FZ files), (ii) response at all the DOFs. The format of output files is as follows:

(i) For Response at just one-degree-of freedom

Column 1 = time array Column 2 = Disp/Acc/Force in X/Y/Z direction of Structure 1. Column 3 = Disp/Acc/Force in X/Y/Z direction of Structure 2. ... Column End = Disp/Acc/Force in X/Y/Z direction of Last Structure

(ii) For Response at all the degrees of freedom.

Column 1 = time array

Column 2 to Column (1+ndof) = Disp/Acc/Force in X/Y/Z direction of Structure 1. Each Column represents response at each DOF.

Column (2+ndof) = Disp/Acc/Force in X/Y/Z direction of Structure 2. Each Column represents response at each DOF

....

Column N... = Disp/Acc/Force in X/Y/Z direction of Last Structure